8 research outputs found

    Sparse PointPillars: Exploiting Sparsity in Birds-Eye-View Object Detection

    Full text link
    Bird's Eye View (BEV) is a popular representation for processing 3D point clouds, and by its nature is fundamentally sparse. Motivated by the computational limitations of mobile robot platforms, we take a fast high-performance BEV 3D object detector - PointPillars - and modify its backbone to exploit this sparsity, leading to decreased runtimes. We present preliminary results demonstrating decreased runtimes with either the same performance or a modest decrease in performance, which we anticipate will be remedied by model specific hyperparameter tuning. Our work is a first step towards a new class of 3D object detectors that exploit sparsity throughout their entire pipeline in order to reduce runtime and resource usage while maintaining good detection performance

    ZeroFlow: Scalable Scene Flow via Distillation

    Full text link
    Scene flow estimation is the task of describing the 3D motion field between temporally successive point clouds. State-of-the-art methods use strong priors and test-time optimization techniques, but require on the order of tens of seconds to process full-size point clouds, making them unusable as computer vision primitives for real-time applications such as open world object detection. Feedforward methods are considerably faster, running on the order of tens to hundreds of milliseconds for full-size point clouds, but require expensive human supervision. To address both limitations, we propose Scene Flow via Distillation, a simple, scalable distillation framework that uses a label-free optimization method to produce pseudo-labels to supervise a feedforward model. Our instantiation of this framework, ZeroFlow, achieves state-of-the-art performance on the Argoverse 2 Self-Supervised Scene Flow Challenge while using zero human labels by simply training on large-scale, diverse unlabeled data. At test-time, ZeroFlow is over 1000x faster than label-free state-of-the-art optimization-based methods on full-size point clouds (34 FPS vs 0.028 FPS) and over 1000x cheaper to train on unlabeled data compared to the cost of human annotation (\$394 vs ~\$750,000). To facilitate further research, we will release our code, trained model weights, and high quality pseudo-labels for the Argoverse 2 and Waymo Open datasets.Comment: 9 pages, 4 pages of citations, 6 pages of Supplemental. Project page with data releases is at http://vedder.io/zeroflow.htm

    A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

    Full text link
    Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.Comment: To appear in Neural Network

    A domain-agnostic approach for characterization of lifelong learning systems

    No full text
    Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of “Lifelong Learning” systems that are capable of (1) Continuous Learning, (2) Transfer and Adaptation, and (3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development — both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future
    corecore